Serie 0
... series of fe takes the form a0 + ∞∑ n= 1 an cos(npix). Then a0 = ∫ 1 0 x( 1− x) dx = (x22 − x 3 3 )∣∣x= 1 x ... = −(− 1) n npi + 2cos(npix) n3pi3 ∣∣∣∣x= 1 x= 0 = −(− 1) n npi + 2(− 1) n − 1 n3pi3 , 3/8 ETH Zürich HS 2021 ... series of fe takes the form a0 + ∞∑ n= 1 an cos(npix). Then a0 = ∫ 1 0 x( 1− x) dx = (x22 − x 3 3 )∣∣x= 1 x ... = −(− 1) n npi + 2cos(npix) n3pi3 ∣∣∣∣x= 1 x= 0 = −(− 1) n npi + 2(− 1) n − 1 n3pi3 , 3/8 ETH Zürich HS 2021 ... Serie 0 ...
lec1-0
... lec1- 0 Woche 1 15.9.20 1 Symmetry 2 Isometries 3 Metadata 4 Set theory 5 Symmetries of polygons ... lec1- 0 Woche 1 15.9.20 1 Symmetry 2 Isometries 3 Metadata 4 Set theory 5 Symmetries of polygons ... https://metaphor.ethz.ch/x/ 2020/hs/401-1511-00L/sc/lec1- 0-printed.pdf ... lec1- 0 ...
Part 0 - Introduction.key
... language context-free language turing machine Part 1 Part 2 Part 3 vendor machines programming languages ... regular language context-free language turing machine Part 1 Part 2 Part 3 Automata & languages A primer ... language context-free language turing machine Part 1 Part 2 Part 3 vendor machines programming languages ... regular language context-free language turing machine Part 1 Part 2 Part 3 Automata & languages A primer ... Part 0 - Introduction.key ...
lec5-0
... lec5- 0 Woche 5 13.10.20 14 Motions fixing a point in R^2 - proof 15 Motions fixing a point in R^ 3 ... - proof 16 Composition of rotations ( 1/2) ... lec5- 0 Woche 5 13.10.20 14 Motions fixing a point in R^2 - proof 15 Motions fixing a point in R^ 3 ... https://metaphor.ethz.ch/x/ 2020/hs/401-1511-00L/sc/lec5- 0-printed.pdf ... lec5- 0 ...
Serie 0
... fe : R→ R be the 2-periodic even function such that fe(x) = x( 1 − x) for x ∈ [ 0, 1]. Let fo : R → R ... be the 2-periodic odd function such that fo(x) = x( 1− x) for x ∈ [ 0, 1]. (a) Compute the Fourier ... fe : R→ R be the 2-periodic even function such that fe(x) = x( 1 − x) for x ∈ [ 0, 1]. Let fo : R → R ... be the 2-periodic odd function such that fo(x) = x( 1− x) for x ∈ [ 0, 1]. (a) Compute the Fourier ... Serie 0 ...
Serie 0
... (pi, t) = 0 t > 0 , u(x, 0) = { 1 if pi3 ≤ x ≤ 2pi3 , 0 if x < pi3 or 2pi 3 < x . Solution: Since we ... := cos ( npi 3 )− cos (2npi3 ) is periodic with period 6 and its values are a1 = 1, a2 = 0, a3 = −2, a4 ... (pi, t) = 0 t > 0 , u(x, 0) = { 1 if pi3 ≤ x ≤ 2pi3 , 0 if x < pi3 or 2pi 3 < x . Solution: Since we ... := cos ( npi 3 )− cos (2npi3 ) is periodic with period 6 and its values are a1 = 1, a2 = 0, a3 = −2, a4 ... Serie 0 ...
Serie 0
... 3 4 5 Answer F T T T F In this exercise, ∆ = ∂xx + ∂yy is the Laplace operator in R2. 1. If ∆u = 0 ... ( 0, 0) = 12pi ∫ 2pi 0 u(cos(θ), sin(θ)) dθ = 12pi ∫ 2pi 0 ( 1 + 3 cos4(θ) ) dθ = 1 + 32pi ∫ 2pi 0 ... 3 4 5 Answer F T T T F In this exercise, ∆ = ∂xx + ∂yy is the Laplace operator in R2. 1. If ∆u = 0 ... ( 0, 0) = 12pi ∫ 2pi 0 u(cos(θ), sin(θ)) dθ = 12pi ∫ 2pi 0 ( 1 + 3 cos4(θ) ) dθ = 1 + 32pi ∫ 2pi 0 ... Serie 0 ...
Serie 0
... > 0 , u(x, 0) = { 1 if pi3 ≤ x ≤ 2pi3 , 0 if x < pi3 or 2pi 3 < x . 3.2. Extreme points of piecewise ... Serie 0 d-chem Prof. Dr. A. Carlotto Mathematik III Problem set 3 ETH Zürich HS 2021 3.1. Heat ... > 0 , u(x, 0) = { 1 if pi3 ≤ x ≤ 2pi3 , 0 if x < pi3 or 2pi 3 < x . 3.2. Extreme points of piecewise ... Serie 0 d-chem Prof. Dr. A. Carlotto Mathematik III Problem set 3 ETH Zürich HS 2021 3.1. Heat ... Serie 0 ...
Sheet 0
... of solutions of (♠) satisfying y( 0) = 1 is a 3-dimensional vector space. � The space of solutions of ... ( 3)( 0) = 1 . *3.4. ODE with given solutions. (a) Find a linear ODE with constant coefficients such ... (♠) satisfying y( 0) = 1 is a 3-dimensional vector space. The space of solutions of (♠) satisfying limt→∞ y(t ... = 0, which satisfies the initial conditions y( 0) = y′( 0) = y′′( 0) = 0, y( 3)( 0) = 1 . *3.4. ODE with ... Sheet 0 ...
Serie 0
... not have to provide any justification for your answers. Question 1 2 3 Answer Let u(x, t) be a ... v(ξ, η) = u(ξ(x, t), η(x, t)). 1. ξ = 4x, η = 5t. 2. ξ = x+ 3t, η = t. 3. ξ = 2x, η = xt. 10.2. IVP ... not have to provide any justification for your answers. Question 1 2 3 Answer Let u(x, t) be a ... v(ξ, η) = u(ξ(x, t), η(x, t)). 1. ξ = 4x, η = 5t. 2. ξ = x+ 3t, η = t. 3. ξ = 2x, η = xt. 10.2. IVP ... Serie 0 ...