1
... 1 Reliability of Technical Systems Tutorial # 3 Due : October 12, 2010 1. Consider the probability ... density function. ≥ = − otherwise te tf t 0 0 002.0 )( 002.0 for t is in hours Calculate reliability ... 1 Reliability of Technical Systems Tutorial # 3 Due : October 12, 2010 1. Consider the probability ... 1 ... 1 ...
1
... 1 Reliability of Technical Systems Tutorial # 3 Solution 1. Consider the probability density ... = 1/1.28×10−4= 7812.5 hours MTTFs= MTTFc/4=1953.125 hours 3. A space vehicle requires three out four ... 1 Reliability of Technical Systems Tutorial # 3 Solution 1. Consider the probability density ... = 1/1.28×10−4= 7812.5 hours MTTFs= MTTFc/4=1953.125 hours 3. A space vehicle requires three out four ... 1 ...
Slide 1
... T T P( 0, 1): If (A[ 0] > A[ 1]) tmp[ 0] = F; P( 0, 2): If (A[ 0] > A[2]) tmp[ 0] = F; P( 0, 3): If (A[ 0 ... ] > A[ 3]) tmp[ 0] = F; P( 1, 0): If (A[ 1] > A[ 0]) tmp[ 1] = F; P( 1, 2): If (A[ 1] > A[2]) tmp[ 1] = F; P( 1, 3 ... T T P( 0, 1): If (A[ 0] > A[ 1]) tmp[ 0] = F; P( 0, 2): If (A[ 0] > A[2]) tmp[ 0] = F; P( 0, 3): If (A[ 0 ... ] > A[ 3]) tmp[ 0] = F; P( 1, 0): If (A[ 1] > A[ 0]) tmp[ 1] = F; P( 1, 2): If (A[ 1] > A[2]) tmp[ 1] = F; P( 1, 3 ... Slide 1 ...
Slide 1
... details pLxx )( 0 xn )( ; 0 gxcwhile xx T ;bAxx 1 0 00 ),( i j ji bAxAxix )),((minarg),,( )()(),( 00 00 ... gxixcgcxn ipxiLxix T i ; 0 0 11 01 xx 0 0 1 01 0 0 11 01 11 01 ),( 0 1 0 00 x i xxix i j ji } ){10( ; 0 0 01 ... details pLxx )( 0 xn )( ; 0 gxcwhile xx T ;bAxx 1 0 00 ),( i j ji bAxAxix )),((minarg),,( )()(),( 00 00 ... gxixcgcxn ipxiLxix T i ; 0 0 11 01 xx 0 0 1 01 0 0 11 01 11 01 ),( 0 1 0 00 x i xxix i j ji } ){10( ; 0 0 01 ... Slide 1 ...
Slide 1
... spcl.inf.ethz.ch @spcl_eth 16 I = { 0 2 , 1 2 , 2 2 , 3 2 , 4 2 , 5 2 , 6 2 } J = {0,1,2} n = 5 ✔ ✔ Sweep3D ✖ MILC ... details pLxx )( 0 xn )( ; 0 gxcwhile xx T ;bAxx 1 0 00 ),( i j ji bAxAxix )),((minarg),,( )()(),( 00 00 ... spcl.inf.ethz.ch @spcl_eth 16 I = { 0 2 , 1 2 , 2 2 , 3 2 , 4 2 , 5 2 , 6 2 } J = {0,1,2} n = 5 ✔ ✔ Sweep3D ✖ MILC ... details pLxx )( 0 xn )( ; 0 gxcwhile xx T ;bAxx 1 0 00 ),( i j ji bAxAxix )),((minarg),,( )()(),( 00 00 ... Slide 1 ...
Slide 1
... details pLxx )( 0 xn )( ; 0 gxcwhile xx T ;bAxx 1 0 00 ),( i j ji bAxAxix )),((minarg),,( )()(),( 00 00 ... gxixcgcxn ipxiLxix T i ; 0 0 11 01 xx 0 0 1 01 0 0 11 01 11 01 ),( 0 1 0 00 x i xxix i j ji } ){10( ; 0 0 01 ... details pLxx )( 0 xn )( ; 0 gxcwhile xx T ;bAxx 1 0 00 ),( i j ji bAxAxix )),((minarg),,( )()(),( 00 00 ... gxixcgcxn ipxiLxix T i ; 0 0 11 01 xx 0 0 1 01 0 0 11 01 11 01 ),( 0 1 0 00 x i xxix i j ji } ){10( ; 0 0 01 ... Slide 1 ...
Slide 1
... = { 0 2 , 1 2 , 2 2 , 3 2 , 4 2 , 5 2 , 6 2 } J = {0,1,2} n = 5 ✔✔ Sweep3D ✖ MILC ✔ HOMME ✔ XNS ... gxcwhile xx T ;bAxx 1 0 00 ),( i j ji bAxAxix )),((minarg),,( )()(),( 00 00 gxixcgcxn ... = { 0 2 , 1 2 , 2 2 , 3 2 , 4 2 , 5 2 , 6 2 } J = {0,1,2} n = 5 ✔✔ Sweep3D ✖ MILC ✔ HOMME ✔ XNS ... gxcwhile xx T ;bAxx 1 0 00 ),( i j ji bAxAxix )),((minarg),,( )()(),( 00 00 gxixcgcxn ... Slide 1 ...
Slide 1
... . Compilation for (int i= 0; i0 outbuf[j] = inbuf[j*2] outbuf[j+ 1] = inbuf[(j+ 1)*2] inbuf += 3 ... ) { outbuf[ 0] = inbuf[ 0] outbuf[ 1] = inbuf[2] outbuf[2] = inbuf[4] outbuf[ 3] = inbuf[6] inbuf += 24 outbuf ... . Compilation for (int i= 0; i0 outbuf[j] = inbuf[j*2] outbuf[j+ 1] = inbuf[(j+ 1)*2] inbuf += 3 ... ) { outbuf[ 0] = inbuf[ 0] outbuf[ 1] = inbuf[2] outbuf[2] = inbuf[4] outbuf[ 3] = inbuf[6] inbuf += 24 outbuf ... Slide 1 ...
Slide 1
... & Outlook 2 S ou rc e: w es tu m fa hr un g. ch (2 00 8) Target 3 fm: Street restructuring ls: Wollishofen ... Slide 1 “Westumfahrung Zurich”: Real World Study with MATSim May 22, 2008, IVTSeminar, ETH Zurich ... & Outlook 2 S ou rc e: w es tu m fa hr un g. ch (2 00 8) Target 3 fm: Street restructuring ls: Wollishofen ... Slide 1 ... Slide 1 ...
Diapositiva 1
... -TONES MODULATION RESULTS 0 1 2 3 4 15 N 14 N 16 O (10 0 0- 00 0 0) P(35) S = 1.66*10 -22 cm 14 N 2 18 O ... (10 0 0- 00 0 0) P(9) S = 2.43*10 -22 cm 14 N 2 16 O (11 1 0-01 1 0) P(56) S = 7.46*10 -23 cm T = 81.2 ... -TONES MODULATION RESULTS 0 1 2 3 4 15 N 14 N 16 O (10 0 0- 00 0 0) P(35) S = 1.66*10 -22 cm 14 N 2 18 O ... (10 0 0- 00 0 0) P(9) S = 2.43*10 -22 cm 14 N 2 16 O (11 1 0-01 1 0) P(56) S = 7.46*10 -23 cm T = 81.2 ... Diapositiva 1 ...