lec1-0
... lec1- 0 Woche 1 15.9.20 1 Symmetry 2 Isometries 3 Metadata 4 Set theory 5 Symmetries of polygons ... lec1- 0 Woche 1 15.9.20 1 Symmetry 2 Isometries 3 Metadata 4 Set theory 5 Symmetries of polygons ... https://metaphor.ethz.ch/x/ 2020/hs/401-1511-00L/sc/lec1- 0-printed.pdf ... lec1- 0 ...
lec5-0
... lec5- 0 Woche 5 13.10.20 14 Motions fixing a point in R^ 2 - proof 15 Motions fixing a point in R^ 3 ... - proof 16 Composition of rotations ( 1/ 2) ... lec5- 0 Woche 5 13.10.20 14 Motions fixing a point in R^ 2 - proof 15 Motions fixing a point in R^ 3 ... - proof 16 Composition of rotations ( 1/ 2) ... lec5- 0 ...
スライド 0
... % 50% 60% 70% 80% 90% 100% 0 20 40 60 80 100 120 140 160 180 200 S P (% ) d (nm) 12 10 8 6 4 2 0 I/ I 0 ... excitation. ө ( 1) Full-field simulation w/o the slit to generate incident field for step 2 (ө = 30o). ( 2 ... % 50% 60% 70% 80% 90% 100% 0 20 40 60 80 100 120 140 160 180 200 S P (% ) d (nm) 12 10 8 6 4 2 0 I/ I 0 ... excitation. ө ( 1) Full-field simulation w/o the slit to generate incident field for step 2 (ө = 30o). ( 2 ... スライド 0 ...
Serie 0
... −n = 0 for n ∈ { 1, 2} and n > 3, • 8a3 + 18a− 3 = 3. Joining the information we have, we deduce • an ... 3 4 5 Answer F T T T F In this exercise, ∆ = ∂xx + ∂yy is the Laplace operator in R2. 1. If ∆u = 0 ... −n = 0 for n ∈ { 1, 2} and n > 3, • 8a3 + 18a− 3 = 3. Joining the information we have, we deduce • an ... 3 4 5 Answer F T T T F In this exercise, ∆ = ∂xx + ∂yy is the Laplace operator in R2. 1. If ∆u = 0 ... Serie 0 ...
Serie 0
... := cos ( npi 3 )− cos (2npi3 ) is periodic with period 6 and its values are a1 = 1, a2 = 0, a3 = − 2, a4 ... (pi, t) = 0 t > 0 , u(x, 0) = { 1 if pi3 ≤ x ≤ 2pi3 , 0 if x < pi3 or 2pi 3 < x . Solution: Since we ... := cos ( npi 3 )− cos (2npi3 ) is periodic with period 6 and its values are a1 = 1, a2 = 0, a3 = − 2, a4 ... (pi, t) = 0 t > 0 , u(x, 0) = { 1 if pi3 ≤ x ≤ 2pi3 , 0 if x < pi3 or 2pi 3 < x . Solution: Since we ... Serie 0 ...
Serie 0
... ) = w(x− 2t, 0) + w(x+ 2t, 0) 2 + 1 4 ∫ x+2t x−2t ( 6 cos(u) + 14 ) du = 12 ( 2(x− 2t) 2 + (x− 2t) 3 24 ... + 2u(x+ ct) 2 2 = 2x 2 + 8t2, 1 4 ∫ 2+2t x−2t 6 cos(u) du = 3 cos(x) sin(2t), and 1 4 ∫ t 0 ∫ x+ 2(t−τ) x ... ) = w(x− 2t, 0) + w(x+ 2t, 0) 2 + 1 4 ∫ x+2t x−2t ( 6 cos(u) + 14 ) du = 12 ( 2(x− 2t) 2 + (x− 2t) 3 24 ... + 2u(x+ ct) 2 2 = 2x 2 + 8t2, 1 4 ∫ 2+2t x−2t 6 cos(u) du = 3 cos(x) sin(2t), and 1 4 ∫ t 0 ∫ x+ 2(t−τ) x ... Serie 0 ...
Serie 0
... > 0 , u(x, 0) = { 1 if pi3 ≤ x ≤ 2pi3 , 0 if x < pi3 or 2pi 3 < x . 3.2. Extreme points of piecewise ... Serie 0 d-chem Prof. Dr. A. Carlotto Mathematik III Problem set 3 ETH Zürich HS 2021 3.1. Heat ... > 0 , u(x, 0) = { 1 if pi3 ≤ x ≤ 2pi3 , 0 if x < pi3 or 2pi 3 < x . 3.2. Extreme points of piecewise ... Serie 0 d-chem Prof. Dr. A. Carlotto Mathematik III Problem set 3 ETH Zürich HS 2021 3.1. Heat ... Serie 0 ...
Sheet 0
... of solutions of (♠) satisfying y( 0) = 1 is a 3-dimensional vector space. � The space of solutions of ... ) = 0 is a 2-dimensional vector space. 3.2. A glance at systems. Let y(n) + an−1y(n− 1) + . . .+ a1y ... (♠) satisfying y( 0) = 1 is a 3-dimensional vector space. The space of solutions of (♠) satisfying limt→∞ y(t ... ) = 0 is a 3-dimensional vector space. The space of solutions of (♠) satisfying y′( 0) = 0 is a 2 ... Sheet 0 ...
Serie 0
... = −(− 1) n npi + 2cos(npix) n3pi3 ∣∣∣∣x= 1 x= 0 = −(− 1) n npi + 2(− 1) n − 1 n3pi3 , 3/8 ETH Zürich HS 2021 ... such that fe(x) = x( 1 − x) for x ∈ [ 0, 1]. Let fo : R → R be the 2-periodic odd function such that fo(x ... = −(− 1) n npi + 2cos(npix) n3pi3 ∣∣∣∣x= 1 x= 0 = −(− 1) n npi + 2(− 1) n − 1 n3pi3 , 3/8 ETH Zürich HS 2021 ... such that fe(x) = x( 1 − x) for x ∈ [ 0, 1]. Let fo : R → R be the 2-periodic odd function such that fo(x ... Serie 0 ...
Serie 0
... answers in the grid will be taken into consideration for grading. Question 1 2 3 4 5 Answer In this ... = 0 in D, u(x, y) = 2− x3 for (x, y) ∈ ∂D, then u( 0, 12) > 1. 5. Let D := {(x, y) : x2 + y2 = 1}. If u ... answers in the grid will be taken into consideration for grading. Question 1 2 3 4 5 Answer In this ... = 0 in D, u(x, y) = 2− x3 for (x, y) ∈ ∂D, then u( 0, 12) > 1. 5. Let D := {(x, y) : x2 + y2 = 1}. If u ... Serie 0 ...