30 Ergebnisse für "weierstrass"

Geometry, Representation theory, and Moduli Seminar

... upcoming talks October 19 I. Setayesh Princeton Rutgers The discrete Weierstrass representation of surfaces ... Springer representations and Hitchin fibration November 23 D. Zakharov Columbia The discrete Weierstrass ...

https://people.math.ethz.ch/~rahul/slopeb.pdf

... . Using the Weierstrass divisor, multiples of ψ can be shown to be effective. We might expect then that aψ ... marking 1 on a component of genus i. Another basic effective class is the Weierstrass divisor (4) W = −λ ... . Using the Weierstrass divisor, multiples of ψ can be shown to be effective. We might expect then that aψ ... marking 1 on a component of genus i. Another basic effective class is the Weierstrass divisor (4) W = −λ ...

Absolute Konvergenz – Analysis I (Kap. 1-9)

... 7.12 ) zeigen. Korollar 7.29 (Majorantenkriterium von Weierstrass). Sei Beweis. | ∑ ■ Korollar 7.30 ... (Majorantenkriterium von Weierstrass) . Sei (an )n eine komplexe und (bn)n eine reelle Folge mit |an|≤ bn f ü r alle ...

Functional A posteriori error estimation for stationary reaction-co...

... , Martin Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany Samrowski, Tatiana ...

Die Axiome der reellen Zahlen – Analysis I (Kap. 1-9)

... , doch wurde sie erst im 19. Jahrhundert in den Arbeiten zahlreicher Mathematiker, darunter Weierstrass ... zahlreicher Mathematiker, darunter Weierstrass, Heine, Cantor und Dedekind, erfolgreich (siehe auch diesen ...

https://people.math.ethz.ch/~rahul/HoloDiff.pdf

... p ∈ C is a Weierstrass point. For g = 3, the first and the third coincide H3(4)+ = H3(4)hyp , thus ... p ∈ C is a Weierstrass point. For g = 3, the first and the third coincide H3(4)+ = H3(4)hyp , thus ...

Entropy and canonical height

... Let E be an elliptic curve defined over the rationals, given by a generalized Weierstrass equation (3 ... generalized Weierstrass form as in (3). From the shape of this equation, the denominator of the x- coordinate ... Let E be an elliptic curve defined over the rationals, given by a generalized Weierstrass equation (3 ... generalized Weierstrass form as in (3). From the shape of this equation, the denominator of the x- coordinate ...

https://people.math.ethz.ch/~kowalske/elliptic-sieve.pdf

... paucity of primes and prime powers in such sequences. Let E/Q be an elliptic curve given by a Weierstrass ... paucity of primes and prime powers in such sequences. Let E/Q be an elliptic curve given by a Weierstrass ...

Handbook of Moduli

... Weierstrass point. Let ∆ ⊂Mg,1 be the degeneracy locus of φ of pure codimension g − 1. By the Thom-Porteous ... curve has 2g+2 Weierstrass points, [Hg] = 1 2g + 2 pi∗([∆]) ∈ Rg−2(Mg) . By Theorem 1.7, the class of ... Weierstrass point. Let ∆ ⊂Mg,1 be the degeneracy locus of φ of pure codimension g − 1. By the Thom-Porteous ... curve has 2g+2 Weierstrass points, [Hg] = 1 2g + 2 pi∗([∆]) ∈ Rg−2(Mg) . By Theorem 1.7, the class of ...

https://people.math.ethz.ch/~mimoreira/bachelor_project.pdf

... ; in particular we construct the Weierstrass elliptic function ℘. In section 3.2 we consider the ... and Weierstrass theorem to obtain a contradiction. � This is is a generalization of the classic ... ; in particular we construct the Weierstrass elliptic function ℘. In section 3.2 we consider the ... and Weierstrass theorem to obtain a contradiction. This is is a generalization of the classic ...

Mehr Ergebnisse

Nach oben