Serie 0
... . Die Steigung ist: m = ∆y∆x = 2− 0 1− (− 3) = 2 4 = 1 2 . 15.10. Wie lautet die Gleichung der Tangente ... Minimalstelle und 0 ein lokales Minimum. Diese Abbildung zeigt den Graphen der Funktion f : 1 2 3 4 5 6 -10 10 ... . Die Steigung ist: m = ∆y∆x = 2− 0 1− (− 3) = 2 4 = 1 2 . 15.10. Wie lautet die Gleichung der Tangente ... Minimalstelle und 0 ein lokales Minimum. Diese Abbildung zeigt den Graphen der Funktion f : 1 2 3 4 5 6 -10 10 ... Serie 0 ...
lec1-0
... lec1- 0 Woche 1 15.9.20 1 Symmetry 2 Isometries 3 Metadata 4 Set theory 5 Symmetries of polygons ... lec1- 0 Woche 1 15.9.20 1 Symmetry 2 Isometries 3 Metadata 4 Set theory 5 Symmetries of polygons ... https://metaphor.ethz.ch/x/ 2020/hs/401-1511-00L/sc/lec1- 0-printed.pdf ... lec1- 0 ...
Sheet 0
... Sheet 0 D-ITET Prof. Dr Tristan Rivière Analysis 1 Musterlösung 4 ETH Zürich HS 2022 4.1 ... (z) = ∏mj= 1(z − zj). Lösung. 3/8 ETH Zürich HS 2022 Analysis 1 Musterlösung 4 D-ITET Prof. Dr Tristan ... Sheet 0 D-ITET Prof. Dr Tristan Rivière Analysis 1 Musterlösung 4 ETH Zürich HS 2022 4.1 ... (z) = ∏mj= 1(z − zj). Lösung. 3/8 ETH Zürich HS 2022 Analysis 1 Musterlösung 4 D-ITET Prof. Dr Tristan ... Sheet 0 ...
Sheet 0
... = 16n 3 + 100n+ 1000000 27n3 + 10920n+ 2020 2/ 3 D-ITET Prof. Dr Tristan Rivière Analysis 1 Serie 4 ETH ... Sheet 0 D-ITET Prof. Dr Tristan Rivière Analysis 1 Serie 4 ETH Zürich HS 2022 4.1. Quadratische ... = 16n 3 + 100n+ 1000000 27n3 + 10920n+ 2020 2/ 3 D-ITET Prof. Dr Tristan Rivière Analysis 1 Serie 4 ETH ... Sheet 0 D-ITET Prof. Dr Tristan Rivière Analysis 1 Serie 4 ETH Zürich HS 2022 4.1. Quadratische ... Sheet 0 ...
Serie 0
... . Sei f : [ 0, 6] → R x 7→ f(x) = 2x3 − 15x2 + 24x. Welche der folgenden Aussagen trifft zu? (a) 1 und 4 ... rekursiv definiert durch d1 := 1 dn+ 1 := √ 2dn + 3. Untersuchen Sie die Folge (dn)n∈N> 0 auf Konvergenz und ... . Sei f : [ 0, 6] → R x 7→ f(x) = 2x3 − 15x2 + 24x. Welche der folgenden Aussagen trifft zu? (a) 1 und 4 ... rekursiv definiert durch d1 := 1 dn+ 1 := √ 2dn + 3. Untersuchen Sie die Folge (dn)n∈N> 0 auf Konvergenz und ... Serie 0 ...
Serie 0
... + ( − 12 ) +13+ 1 3+ ( − 13 ) +14+ 1 4+ ( − 14 ) +... konvergiert nicht. □ ∑∞n= 1 an ist konvergent und ϕ ... + ( − 13 ) + 14 + ( − 14 ) + ... konvergiert aber ∞∑ n= 1 bn = 1 + 1 2 + 1 3 + 1 4 + 1 5 + ... konvergiert ... + ( − 12 ) +13+ 1 3+ ( − 13 ) +14+ 1 4+ ( − 14 ) +... konvergiert nicht. □ ∑∞n= 1 an ist konvergent und ϕ ... + ( − 13 ) + 14 + ( − 14 ) + ... konvergiert aber ∞∑ n= 1 bn = 1 + 1 2 + 1 3 + 1 4 + 1 5 + ... konvergiert ... Serie 0 ...
Serie 0
... (x) = c(x−2)(x+2). Da sie auch durch ( 0, 4) geht, schliesst man, dass c = − 1. Also hat f die Form f(x ... bestimmte oder unbestimmte Integrale: *(a) ∫ 7 1 4− x3 + x x dx; (b) ∫ 2 1 (x2/ 3 − 2) (x2 + 3) dx; *(c ... (x−2)(x+2). Da sie auch durch ( 0, 4) geht, schliesst man, dass c = − 1. Also hat f die Form f(x) = −x2 ... bestimmte oder unbestimmte Integrale: *(a) ∫ 7 1 4− x3 + x x dx; (b) ∫ 2 1 (x2/ 3 − 2) (x2 + 3) dx; *(c ... Serie 0 ...
スライド 0
... % 50% 60% 70% 80% 90% 100% 0 20 40 60 80 100 120 140 160 180 200 S P (% ) d (nm) 12 10 8 6 4 2 0 I/ I 0 ... © KONICA MINOLTA 14 Trade-off btw SP-enhanced excitation and –quenched emission in SPFS 0% 10% 20% 30% 40 ... % 50% 60% 70% 80% 90% 100% 0 20 40 60 80 100 120 140 160 180 200 S P (% ) d (nm) 12 10 8 6 4 2 0 I/ I 0 ... © KONICA MINOLTA 14 Trade-off btw SP-enhanced excitation and –quenched emission in SPFS 0% 10% 20% 30% 40 ... スライド 0 ...
Sheet 0
... Sheet 0 D-ITET Prof. Dr Tristan Rivière Analysis 1 Serie 3 ETH Zürich HS 2022 3.1. Komplexe Zahlen ... Serie 3 D-ITET Prof. Dr Tristan Rivière (d) Schliessen Sie, dass (x+ y)N+ 1 = ( N 0 ) xN+ 1 + N∑ k= 1 [( N ... Sheet 0 D-ITET Prof. Dr Tristan Rivière Analysis 1 Serie 3 ETH Zürich HS 2022 3.1. Komplexe Zahlen ... Serie 3 D-ITET Prof. Dr Tristan Rivière (d) Schliessen Sie, dass (x+ y)N+ 1 = ( N 0 ) xN+ 1 + N∑ k= 1 [( N ... Sheet 0 ...
Serie 0
... (5n+ 2n)3n+ 1 = 5(n+ 1) 2n + 2( 5n 2n + 1 ) · 3 . Wir wissen, dass n2n → 0.(Siehe: Notizen 7.7.2022 ... 2n = 0. Es folgt, dass lim n→∞ |an+ 1| |an| = 2 3 und nach Quotientenkriterium konvergiert die Reihe ... (5n+ 2n)3n+ 1 = 5(n+ 1) 2n + 2( 5n 2n + 1 ) · 3 . Wir wissen, dass n2n → 0.(Siehe: Notizen 7.7.2022 ... 2n = 0. Es folgt, dass lim n→∞ |an+ 1| |an| = 2 3 und nach Quotientenkriterium konvergiert die Reihe ... Serie 0 ...